pos機(jī)錯(cuò)誤代碼a7,手把手傳授給你高效搜索法的絕技

 新聞資訊2  |   2023-05-22 08:26  |  投稿人:pos機(jī)之家

網(wǎng)上有很多關(guān)于pos機(jī)錯(cuò)誤代碼a7,手把手傳授給你高效搜索法的絕技的知識(shí),也有很多人為大家解答關(guān)于pos機(jī)錯(cuò)誤代碼a7的問題,今天pos機(jī)之家(www.dsth100338.com)為大家整理了關(guān)于這方面的知識(shí),讓我們一起來看下吧!

本文目錄一覽:

1、pos機(jī)錯(cuò)誤代碼a7

pos機(jī)錯(cuò)誤代碼a7

全文共10788字,預(yù)計(jì)學(xué)習(xí)時(shí)長(zhǎng)20分鐘或更長(zhǎng)

圖片來源:unsplash.com/@lucassankey

人與世界萬物的互動(dòng)會(huì)產(chǎn)生大量的時(shí)空數(shù)據(jù)。那么,當(dāng)我們需要隨時(shí)調(diào)用過去的數(shù)據(jù)時(shí),改怎么辦?尤其是面對(duì)各種海量、多維度的數(shù)據(jù)庫(kù),如果沒有高效的搜索方法,我們只能望洋興嘆、束手無策。

別擔(dān)心,本文將用詳細(xì)的代碼,手把手來傳授高效搜索法的絕技!

對(duì)象數(shù)據(jù)分類

對(duì)象數(shù)據(jù)可分為兩種類型:靜態(tài)數(shù)據(jù)(相對(duì)靜態(tài),例如建筑)和動(dòng)態(tài)數(shù)據(jù)(例如人的活動(dòng)和物聯(lián)網(wǎng)傳感器的活動(dòng))。

按研究需求分類的索引

時(shí)空快照搜索

有些對(duì)象以相對(duì)較低的頻率生成數(shù)據(jù)。例如,建筑物和道路等惰性物體可能在數(shù)年內(nèi)不會(huì)發(fā)生任何變化。如果將為這些對(duì)象生成的數(shù)據(jù)寫入數(shù)據(jù)庫(kù),并按時(shí)間范圍查詢數(shù)據(jù)(例如,查詢?nèi)掌跒?017-07-01至2017-07-02),則可能找不到與這些對(duì)象相關(guān)的任何數(shù)據(jù)。原因很簡(jiǎn)單,在這段時(shí)間內(nèi)數(shù)據(jù)庫(kù)根本沒有相關(guān)數(shù)據(jù)輸入。

時(shí)空行為數(shù)據(jù)搜索

時(shí)空行為數(shù)據(jù)是指從人的活動(dòng)等動(dòng)態(tài)對(duì)象中獲取數(shù)據(jù)。

例如,分析特定地區(qū)特定時(shí)間段內(nèi)某一人群的特征,或者分析大學(xué)周邊人群在工作日和周末構(gòu)成的差異。

時(shí)空快照不屬于本文的討論范圍?,F(xiàn)在,我們看看如何搜索時(shí)空行為數(shù)據(jù)。

數(shù)據(jù)結(jié)構(gòu)

圖片來源:unsplash.com/@dekubaum

時(shí)空行為數(shù)據(jù)包含三個(gè)屬性:時(shí)間、空間和對(duì)象。

非結(jié)構(gòu)化索引:

create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location obj jsonb -- Object description );

除了應(yīng)用于JSON,結(jié)構(gòu)化數(shù)據(jù)還可以用于對(duì)象描述。例如:

create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location c1 int, -- Some property examples c2 int, c3 text, c4 float8, c5 int, c6 date, c7 text, c8 int, c9 int, c10 int );

時(shí)空行為數(shù)據(jù)的SQL查詢實(shí)例

select * from test where pos <-> ? < ? and crt_time between ? and ? and ( (c1 = ? and c2 between ? and ?) or c10=?) ... ;

優(yōu)化方法

考慮運(yùn)用以下知識(shí):

時(shí)間序列BRIN索引

crt_time字段是一個(gè)時(shí)間序列字段,表示生成數(shù)據(jù)的時(shí)間。在PostgreSQL堆存儲(chǔ)中,存儲(chǔ)和該字段的值具有很強(qiáng)的線性相關(guān)性。

因此,BRIN索引很合適。

使用BRIN索引來代替分區(qū)表進(jìn)行TPC-H測(cè)試。大范圍搜索的性能甚至優(yōu)于使用分區(qū)表時(shí)的功能。

create index idx_test_1 on test using brin(crt_time);

空間索引

顯然,空間檢索需要空間索引。PostgreSQL中可以使用三種方法實(shí)現(xiàn)空間檢索。

1. 幾何類型的GIST索引

create index idx_test_2 on test using gist(pos);

該索引支持空間KNN搜索和空間位置確定等功能。

2. 幾何類型的主索引

create index idx_test_2 on test using spgist(pos);

該索引支持空間KNN搜索和空間位置確定等功能。

3. Geohash和B-tree索引(將經(jīng)度和緯度轉(zhuǎn)換為Geohash并為hash值創(chuàng)建B-tree索引)。只需使用表達(dá)式索引。

create index idx_test_3 on test using btree( ST_GeoHash(pos,15) );

此索引支持前綴搜索(其能落實(shí)編碼地理信息網(wǎng)格中包含的關(guān)系)。它屬于有損索引,需要二次過濾。

GiST和SPGiST空間索引能夠找到準(zhǔn)確的地理位置信息,優(yōu)于GEOHASH索引。但是,查詢信息時(shí)需要特別注意。

GIN 索引

此索引類型的目標(biāo)是對(duì)象屬性字段JSONB或多個(gè)結(jié)構(gòu)化對(duì)象屬性字段。只需使用GIN索引。

例如:

create extension btree_gin;

非結(jié)構(gòu)化索引:

create index idx_test_4 on test using gin( obj );

結(jié)構(gòu)化索引:

create index idx_test_4 on test using gin( c1,c2,c3,c4,c5,c6,c7,c8,c9 );

BitmapAnd和BitmapOr

在上一節(jié)中,根據(jù)數(shù)據(jù)類型和查詢需求可以為不同的查詢維度選擇相應(yīng)的索引。

但是,可以同時(shí)使用這些索引嗎? PostgreSQL為多個(gè)索引提供bitmapAnd及bitmapOr接口。它們可以組合多個(gè)索引,減少需要掃描的數(shù)據(jù)庫(kù)數(shù)量。

Heap, one square = one page: +---------------------------------------------+ |c____u_____X___u___X_________u___cXcc______u_| +---------------------------------------------+ Rows marked c match customers pkey condition. Rows marked u match username condition. Rows marked X match both conditions. Bitmap scan from customers_pkey: +---------------------------------------------+ |100000000001000000010000000000000111100000000| bitmap 1 +---------------------------------------------+ One bit per heap page, in the same order as the heap Bits 1 when condition matches, 0 if not Bitmap scan from ix_cust_username: +---------------------------------------------+ |000001000001000100010000000001000010000000010| bitmap 2 +---------------------------------------------+ Once the bitmaps are created a bitwise AND is performed on them: +---------------------------------------------+ |100000000001000000010000000000000111100000000| bitmap 1 |000001000001000100010000000001000010000000010| bitmap 2 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |000000000001000000010000000000000010000000000| Combined bitmap +-----------+-------+--------------+----------+ | | | v v v Used to scan the heap only for matching pages: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ The bitmap heap scan then seeks to the start of each page and reads the page: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ seek------->^seek-->^seek--------->^ | | | ------------------------ only these pages read

例如:

select * from test where c1 ... and crt_time between ? and ? and test->> c1 in (?, ? ...);

根據(jù)統(tǒng)計(jì)數(shù)據(jù)自動(dòng)使用適當(dāng)?shù)乃饕?。如果需要,bitmapAnd和bitmapOr將在多個(gè)索引上自動(dòng)執(zhí)行合并掃描。跳過不需要掃描的頁(yè)面,重新檢查命中的頁(yè)面。

堆表存儲(chǔ)分級(jí)和分區(qū)

存儲(chǔ)可以分為一級(jí)分區(qū)或多級(jí)分區(qū):

1. 單一分區(qū)

例如,按時(shí)間劃分。

create table test( id int8, crt_time timestamp, -- Time pos geometry, -- Location obj jsonb -- Object description ) PARTITION BY range (crt_time) ; create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ); ......

2. 多層分區(qū)

例如,先按時(shí)間分區(qū),然后按Geohash劃分。

create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ) partition by range(st_geohash(pos,15)); ... create table test_201701_prefix1 PARTITION OF test for values FROM ( xxxx1 ) TO ( xxxx2 ); -- Generate BOX (GRID) on a map, find corresponding boundaries and use -- boundaries as partitioning conditions

使用分區(qū)時(shí),如果查詢條件包括分區(qū)鍵(如時(shí)間和空間范圍),相應(yīng)的分區(qū)將自動(dòng)定位,這即為需要掃描的數(shù)據(jù)量。

創(chuàng)建面向?qū)ο髮傩缘腉IN索引,以實(shí)現(xiàn)高效查詢。

索引分級(jí)與分區(qū)

與數(shù)據(jù)一樣,索引在不使用分區(qū)表的情況下也支持分區(qū)邏輯。

空間索引+時(shí)間分區(qū)

create index idx_20170101 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 ; ... create index idx_20170102 on tbl using gist (pos) where crt_time between 2017-01-02 and 2017-01-03 ; ...

通過使用前述分區(qū)索引,可以在輸入時(shí)間范圍后快速定位目標(biāo)數(shù)據(jù),執(zhí)行空間搜索。

select * from tbl where crt_time between 2017-01-01 and 2017-01-02 -- Time and (pos <-> ?) < ? -- Distance to a point to be searched for and ? -- Other conditions order by pos <-> ? -- Sort by distance limit ?; -- Number of results to be returned

可以使用更多的索引分區(qū),比如用作搜索條件和商店類型的維度(對(duì)象屬性)(假設(shè)它是可枚舉的或在范圍相對(duì)較小的情況下)。

create index idx_20170101_mod0 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=0; ... create index idx_20170101_mod1 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=1; ...

通過使用前面的分區(qū)索引,在輸入時(shí)間范圍或特定條件以執(zhí)行空間搜索后,可以快速定位目標(biāo)數(shù)據(jù)。

select * from tbl where crt_time between 2017-01-01 and 2017-01-02 -- Time and (pos <-> ?) < ? -- Distance to a point to be searched for and dtype=0 -- Object condition and ? -- Other conditions order by pos <-> ? -- Sort by distance limit ?; -- Number of results to be returned

請(qǐng)注意,前面的SQL查詢可以實(shí)現(xiàn)最佳性能優(yōu)化。

索引組織形式(或索引結(jié)構(gòu))可以由邏輯分區(qū)重新構(gòu)造,可以用上述類似的索引創(chuàng)建方法覆蓋所有條件。

CTID相交陣列連接掃描

如前所述,BitmapAnd和BitmapOr合并掃描是在多個(gè)索引或GIN索引中自動(dòng)執(zhí)行的。事實(shí)上,這種掃描也可以在SQL中顯式執(zhí)行。

每個(gè)條件滲透對(duì)應(yīng)的CTID。

使用Intersect或Union生成滿足總體需求的CTID。(Intersect對(duì)應(yīng)于“and”條件;union對(duì)應(yīng)于“or”條件。)

生成一個(gè)ctid數(shù)組。

示例

圖片來源:unsplash.com/@markusspiske

1. 創(chuàng)建對(duì)象提要數(shù)據(jù)表

postgres=# create table tbl (id int, info text, crt_time timestamp, pos point, c1 int , c2 int, c3 int ); CREATE TABLE

2. 將5000萬條測(cè)試數(shù)據(jù)寫入表中

postgres=# insert into tbl select generate_series(1,50000000), md5(random()::text), clock_timestamp(), point(180-random()*180, 90-random()*90), random()*10000, random()*5000, random()*1000; INSERT 0 50000000

3. 創(chuàng)建對(duì)象索引

postgres=# create index idx_tbl_1 on tbl using gin (info, c1, c2, c3); CREATE INDEX

4. 創(chuàng)建時(shí)間索引

postgres=# create index idx_tbl_2 on tbl using btree (crt_time); CREATE INDEX

5. 創(chuàng)建空間索引

postgres=# create index idx_tbl_3 on tbl using gist (pos); CREATE INDEX

6. 生成數(shù)據(jù)布局以方便后續(xù)查詢

postgres=# select min(crt_time),max(crt_time),count(*) from tbl; min | max | count ----------------------------+----------------------------+---------- 2017-07-22 17:59:34.136497 | 2017-07-22 18:01:27.233688 | 50000000 (1 row)

7. 創(chuàng)建一個(gè)極限KNN查詢函數(shù)

create or replace function ff(point, float8, int) returns setof tid as $declare v_rec record; v_limit int := $3; begin set local enable_seqscan=off; -- Force index that exits when scanned rows reach a specific number for v_rec in select *, (pos <-> $1) as dist, ctid from tbl order by pos <-> $1 loop if v_limit <=0 then -- raise notice "Sufficient data obtained" return; end if; if v_rec.dist > $2 then -- raise notice "All matching points returned" return; else return next v_rec.ctid; end if; v_limit := v_limit -1; end loop; end; $ language plpgsql strict volatile; postgres=# select * from ff(point (100,100) ,100,100) ; ff ------------- (407383,11) (640740,9) (26073,51) (642750,34) ... (100 rows) Time: 1.061 ms

8. CTID合并檢索

顯示符合以下條件的記錄

( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) and pos <-> point (0,0) < 5 and crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 ;

首先,分別查看每個(gè)條件,找匹配一個(gè)條件的記錄數(shù)量,以及在索引掃描上所花時(shí)長(zhǎng)。

1. 54,907條記錄

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c1 in (1,2,3,4,100,200,99,88,77,66,55); QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on postgres.tbl (cost=820.07..65393.94 rows=54151 width="360px",height="auto" />

2. 95,147條記錄

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c2<10; QUERY PLAN --------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on postgres.tbl (cost=835.73..112379.10 rows=99785 width="360px",height="auto" />

3. 149930條記錄(為快速獲得結(jié)果,PostgreSQL使用位圖進(jìn)行合并掃描)

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 <10; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------ Bitmap Heap Scan on postgres.tbl (cost=1694.23..166303.58 rows=153828 width="360px",height="auto" />

4. 60,687條記錄(即使運(yùn)用出色的KNN性能優(yōu)化,仍然需要耗費(fèi)195毫秒)。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from ff(point (0,0) ,5,1000000); QUERY PLAN ---------------------------------------------------------------------------------------------------------------------- Function Scan on postgres.ff (cost=0.25..10.25 rows=1000 width="360px",height="auto" />

讓我們看看不使用KNN優(yōu)化需要多長(zhǎng)時(shí)間。

結(jié)果非常令人驚訝——極限優(yōu)化性能提高了一個(gè)數(shù)量級(jí)。

5. 2,640,751條記錄

使用所有索引逐個(gè)掃描數(shù)據(jù)條件,得到ctid并執(zhí)行ctid掃描。

現(xiàn)在,讓我們來分解這個(gè)過程:

首先,讓我們看看時(shí)間和對(duì)象屬性的合并查詢,成果非常驚人。使用位圖BitmapOr時(shí),查詢可以跳過大多數(shù)數(shù)據(jù)塊,并且掃描時(shí)間比單索引掃描要短。

注意,在此步驟中記錄的數(shù)量減少到7,847條。

postgres=# explain (analyze,verbose,timing,costs,buffers) select ctid from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ); QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on postgres.tbl (cost=35025.85..44822.94 rows=7576 width="360px",height="auto" />

然后,看KNN的掃描時(shí)間:

注意,60,687條記錄滿足KNN距離條件,所以接下來將解釋CTID合并掃描與原始掃描之間的性能比較。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from ff(point (0,0) ,5,1000000); QUERY PLAN ---------------------------------------------------------------------------------------------------------------------- Function Scan on postgres.ff (cost=0.25..10.25 rows=1000 width="360px",height="auto" />

最后,將這些片段合并到ctid中。

select * from ff(point (0,0) ,5,1000000) intersect select ctid from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ); ff ------------ (1394,8) (3892,50) (6124,45) (7235,8) (7607,45) (11540,8) (13397,31) (14266,36) (18149,7) (19256,44) (24671,62) (26525,64) (30235,48) (13 rows) Time: 463.012 ms

取得最終紀(jì)錄。

select * from tbl where ctid = any ( array( -- array start select * from ff(point (0,0) ,5,1000000) intersect select ctid from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) ) -- array end ); id | info | crt_time | pos | c1 | c2 | c3 ---------+----------------------------------+----------------------------+----------------------------------------+------+------+----- 104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543 291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360 459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8 542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245 570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561 865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875 1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208 1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355 1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232 1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820 1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321 1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74 2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 (13 rows) Time: 462.715 ms

過程花費(fèi)462毫秒。

9. 測(cè)試原始SQL查詢的性能: PostgreSQL Multi-Index BitmapAnd and BitmapOr跳過掃描

直接編寫SQL查詢,而不是使用多CTID掃描。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) and pos <-> point (0,0) < 5; Bitmap Heap Scan on postgres.tbl (cost=35022.06..44857.06 rows=2525 width="360px",height="auto" />

性能如預(yù)期的那樣好,之前解釋過原因。KNN條件以外的條件已經(jīng)將結(jié)果收斂到7,000條記錄,因此沒有必要使用包含KNN條件的索引。(即使使用KNN索引也需要195毫秒,因?yàn)橛?0,687條記錄滿足KNN條件。)

校驗(yàn)結(jié)果:

select * from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) and pos <-> point (0,0) < 5; id | info | crt_time | pos | c1 | c2 | c3 ---------+----------------------------------+----------------------------+----------------------------------------+------+------+----- 104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543 291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360 459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8 542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245 570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561 865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875 1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208 1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355 1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232 1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820 1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321 1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74 2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 (13 rows)

分區(qū)索引示例

假設(shè)前面的查詢條件保持不變,使用分區(qū)索引來測(cè)試性能。

這是為了演示分區(qū)索引的極端效果。在實(shí)際場(chǎng)景中,集合級(jí)別可能沒有那么高(例如按天集合或按ID散列集合)。只要集合是可能的,就可以展現(xiàn)出色的性能。

postgres=# create index idx_tbl_4 on tbl using gist (pos) where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) ; CREATE INDEX Time: 8359.330 ms (00:08.359)

重構(gòu)極值KNN優(yōu)化函數(shù)

create or replace function ff(point, float8, int) returns setof record as $declare v_rec record; v_limit int := $3; begin set local enable_seqscan=off; -- Force index that exits when scanned rows reach a specific number for v_rec in select *, (pos <-> $1) as dist from tbl where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 and ( c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 < 10 ) order by pos <-> $1 loop if v_limit <=0 then -- raise notice "Sufficient data obtained" return; end if; if v_rec.dist > $2 then -- raise notice "All matching points returned" return; else return next v_rec; end if; v_limit := v_limit -1; end loop; end; $ language plpgsql strict volatile;

查詢性能:

postgres=# select * from ff(point (0,0) , 5, 10000000) as t(id int, info text, crt_time timestamp, pos point, c1 int, c2 int, c3 int, dist float8); id | info | crt_time | pos | c1 | c2 | c3 | dist ---------+----------------------------------+----------------------------+----------------------------------------+------+------+-----+------------------- 1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321 | 0.421309141034319 1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74 | 0.49127323294376 1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820 | 2.23004532710301 542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245 | 2.23438404136508 291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360 | 2.76586731309247 1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232 | 2.78803520274409 2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 | 2.88931598221975 459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8 | 3.22896754478952 570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561 | 3.31688000783581 1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208 | 3.47958123047986 865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875 | 3.91188935630676 104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543 | 4.86069100130757 1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355 | 4.97877009299311 (13 rows) Time: 0.592 ms

太棒了!查詢時(shí)間從200毫秒減少到1毫秒以內(nèi)。

優(yōu)化方法綜述

優(yōu)化方法回顧:

1. 為不同的數(shù)據(jù)類型構(gòu)建不同的索引。

例如,對(duì)空間使用GiST或SP-GiST索引,對(duì)時(shí)間使用B樹或BRIN索引,對(duì)多個(gè)對(duì)象屬性使用GIN索引。索引的目的是縮小數(shù)據(jù)掃描的范圍。

2. 方法五提到數(shù)據(jù)分區(qū)。

數(shù)據(jù)分區(qū)的目的是有意地組織數(shù)據(jù),這意味著有意地組織數(shù)據(jù)以滿足搜索需求。例如,如果時(shí)間是必需的查詢條件或公共查詢條件,那么可以按時(shí)間(分區(qū))分割數(shù)據(jù),以減少需要掃描的數(shù)據(jù)量。

3. 方法六描述了索引分區(qū)。

目的類似于方法五。方法五和方法六的區(qū)別在于分區(qū)在索引級(jí)別使用,因此當(dāng)執(zhí)行索引掃描時(shí),數(shù)據(jù)命中率會(huì)直接提高。

4.方法七中的ctid合并掃描類似于PostgreSQL中的多索引bitmapAnd或bitmapOr掃描。

bitmapAnd/bitmapOr跳過不需要掃描的塊,方法七中的ctid合并掃描跳過不需要掃描的行。

合并從多個(gè)索引掃描獲得的ctid。跳過不需要掃描的行數(shù)。

如果當(dāng)其他條件為“AND”時(shí),過濾條件可以顯著減少ctid(記錄),則沒有必要使用ctid合并掃描。相反,使用FILTER作為另一個(gè)條件。(這將略微增加CPU開銷。)

5. 最好的功夫總是以最大的靈活性、自由和對(duì)每一個(gè)動(dòng)作的無限想象為特征。

PostgreSQL實(shí)現(xiàn)多索引BitmapAnd或BitmapOr掃描,顯著提高了多種條件(索引)下的數(shù)據(jù)命中率。

此外,PostgreSQL具有出色的CBO估計(jì)機(jī)制,它允許PostgreSQL不總是使用位圖合并掃描的所有索引。這也是為什么在“測(cè)試原始SQL查詢的性能——PostgreSQL多索引BitmapAnd位圖或跳過掃描”一節(jié)中描述的性能更好。

6. 如何實(shí)現(xiàn)極端優(yōu)化

采用方法五或六,并使用可修復(fù)的條件作為分區(qū)鍵來分區(qū)數(shù)據(jù)或索引。

對(duì)于其他條件,可以使用PostgreSQL中的多索引BitmapAnd或BitmapOr掃描來提高多條件(索引)的數(shù)據(jù)命中率。

我們可以看到,按照時(shí)間、空間和對(duì)象屬性從5,000萬數(shù)據(jù)塊中進(jìn)行多維檢索所需的時(shí)間減少到了0.592毫秒。

7. 對(duì)于空間數(shù)據(jù),除了使用GiST索引,我們還可以使用BRIN索引,這降低了成本。有條理地組織數(shù)據(jù)后,會(huì)使濾波性能良好。

留言 點(diǎn)贊 關(guān)注

我們一起分享AI學(xué)習(xí)與發(fā)展的干貨

編譯組:李美尼、余書敏

相關(guān)鏈接:

https://dzone.com/articles/efficient-search-on-massive-data-with-multidimensi

如需轉(zhuǎn)載,請(qǐng)后臺(tái)留言,遵守轉(zhuǎn)載規(guī)范

以上就是關(guān)于pos機(jī)錯(cuò)誤代碼a7,手把手傳授給你高效搜索法的絕技的知識(shí),后面我們會(huì)繼續(xù)為大家整理關(guān)于pos機(jī)錯(cuò)誤代碼a7的知識(shí),希望能夠幫助到大家!

轉(zhuǎn)發(fā)請(qǐng)帶上網(wǎng)址:http://www.dsth100338.com/newsone/51348.html

你可能會(huì)喜歡:

版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn),該文觀點(diǎn)僅代表作者本人。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請(qǐng)發(fā)送郵件至 babsan@163.com 舉報(bào),一經(jīng)查實(shí),本站將立刻刪除。